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Method for calculating the stress
intensity factor for mode-i indentation

with eccentric loads

DUO Yili1, 2, XIE Yujun1, 2, 3, HAI Jun1, CAI

Yongmei1

Abstract. Stress intensity factor is one of the most important parameters in fracture me-

chanics. The singularity and distribution of Mode-I indentation stress �eld are the same with the

cracks in solids. Based on the conservation law, a new method to calculate stress intensity factor

for Mode-I indentation with eccentric loads is proposed. Compared with the method reported in

the literatures, the proposed method can give two di�erent stress intensity factors at both ends of

the �at-ended square rigid indenter and is simple in calculation.
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1. Introduction

The �at tooth cutting tool of brittle materials, such as rock, ceramics and con-
crete, is a typical application of plane indentation. The indentation model was �rst
used in the macro/micro fretting fatigue, abrasion study, elastic modulus test tech-
nique, etc. Among others[1], gave the impacts of the parameters controlling the
�nite element simulation of instrumented indentation tests and their consequences
on numerical results are reviewed in case of homogeneous materials and functionally
graded ones,[2] used systematic �nite element analysis to examine that how inden-
tation creep tests can be employed to retrieve the steady-state creep parameters
pertaining to regular uniaxial loading,[3] used the �nite element analysis to study
the in�uence of crack forms on indentation hardness test of ceramic materials.

An important part of fracture mechanics is to calculate the stress intensity factor.
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No matter for fracture theory or engineering application, it is very important to �nd
a simple method to solve the stress intensity factor. Similar to the crack problem,
the stress intensity factor is the only measure of the singular stress �eld, and also
a key parameter to establish the fracture criterion of indentation fracture. The
relationship between the energy release rate of the indentation cracking, cracking
direction and stress intensity factors for Mode-I indentation[4], and stress intensity
factors of Mode-I indentation with positive loads are got. In this paper, based on the
conservation law, further research will be made about the stress intensity factors for
Mode-I indentation with eccentric loads. Considering that the two ends of the rigid
square-ended punch have di�erent stress conditions, therefore, two kinds of stress
intensity factors are given. This makes the study of Mode-I indentation problem
more perfect, and it is also very useful for the study of rock breaking technology.

2. Plane indentation structure and singular stress �eld

The indentation geometry is illustrated in Fig. chmetcnvUnitNameaSource-
Value1HasSpaceFalseNegativeFalseNumberType1TCSC01a. A rigid square-ended
punch of width chmet cnv Unit Name l Source Value 2 Has Space False Negative
False Number Type 1 TCSC02l is pressed by a normal load, P, onto the surface of a
frictionless haif-plane, having a Poisson

′
s ratio u and elastic modulus E. According

to the classical analysis, the stress distribution of the indentation interface is shown
as follows[5]:

p(x1) = − P

π
√
l2 − x2

(1)

When a change is made about the co-ordinates x = r − l, and the solution is
expanded, for smallr, using binomial distribution, the pressure in the neighborhood
of the punch corner varies as:

p(x1) = −P
π

(
1√
2lr

+ · · ·) (2)

The contact problem of a rigid, square-ended indenter and elastic solids is the
two-dimensional plane indentation problem. Whilst the requirement that the contact
be frictionless means that the shear traction is zero everywhere along the boundary.
This means the boundary conditions along the line x2=0 are identical in the contact
and crack problem as shown in Fig. 1b. Using the polar coordinates (r, )the stress
at the plane indentation is given by a classical crack-tip �eld solution[6] , σrr

σθθ
σrθ

 = −KI−ind√
2πr

 cos θ2
(
1 + sin2 θ

2

)
cos3 θ2

sin θ
2 cos2 θ2

 (3)

The stress �eld is singular stress �eld, and the de�nition of KI−ind is �indentation
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stress intensity factor�, which is expressed as follows:

KI−ind =
P√
πl

(4)

Fig. 1. Contact between atwo-dimensional retangular punch and a substrate

Fig. 2. Contact between a two-dimensional rectangular punch of eccentric loads
and a substrate

For Eq.(3), this result will be the same as that for a plane semi-in�nite crack (with
an uncracked ligament of 2l) loaded remotely with a normal load P, if the negative
sign is changed into positive, as shown in Fig. 1. Then the plane indentation can be
treated in comparison with a crack growth problem with a well-de�ned stress sin-
gularity, which means that the plane indentation (FigchmetcnvUnitNameaSource-
Value.1HasSpaceFalseNegativeFalseNumberType1TCSC0.1a) should be treated as
the akin mechanism of fracture similar to the mode-I crack (Fig.1).

When a �at surface of the elastic solids is eccentrically loaded by a relatively
rigid, square-ended punch, as shown in Fig. 2, eccentric loads are equivalent to
positive pressure and bending moment. In passing, it may be emphasized that the
left corner of indenter never leave the elastic solids, then the left corner of indenter
and the right corner of indenter arise two di�erent Mode-I singular stress �elds, both
of them are similar to Eq.(3).
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3. Conservation integral

Based on the two-dimensional conservation law, for a closed integration path
without any crack and cavity in it, the following integrals are given as follows[7−10]:

Jj =

∫
s

(wnj − Tiui,j)ds, j = 1, 2 (5)

Eq.(5) has two components (J1and J2), and they can be used to calculate the
stress intensity factors for the cracks in elastomers and plane indentation. In the
following section, some key steps are given to calculate the stress intensity factors
for the indentation based on the J2-integral.

4. Stress intensity factor for mode-I indentation with
eccentric loads of �nite-boundary

The problem of the stress intensity factor for the ideal smooth plane has been
discussed in the literature[4]. Mode-I indentation with eccentric loads, as shown
in Fig. 1, where P

′
is the eccentric loads, M is the bending moment and P is

the normal load. And then the stress intensity factor for Mode-I indentation with
eccentric loads can be expressed as the superposition of stress intensity factors for the
bending moment and the normal load. In this paper, we take the Finite-Boundary
elastic body as an example to study J2integral, i.e.0<x 2<h, 0<x 1<W and hW as
shown in Fig.3.

Under the action of concentrated force, as shown in Fig.3 (a), a closed integration
path Sabcdefghija is selected, and then from Eq.(5), following results can be given[7−9]

J2−−P =

∮
Sabcdefghija

(wn2 − Tiui,2)ds = 0 (6)

For the path Sbc and Sde, because Ti=0 and n2=0, and the following result was
found:

J2−P =

∫
Sbc

wn2 − Tiui,2)ds =

∫
Sde

(wn2 − Tiui,2)ds = 0 (7)

When Sgh and Sij are straight lines, Sfg and Sja account for a quarter of a circle,
and Sija and Sfgh are within the K-dominant regions, it is not di�cult to get the
following results:

J2−P =

∫
Sgh

wn2 − Tiui,2)ds =

∫
Sij

(wn2 − Tiui,2)ds = 0 (8)

J2−P =

∫
Sfg

wn2 − Tiui,2)ds =

∫
Sja

(wn2 − Tiui,2)ds(planestrain) (9)

Where E is the elastic modulus and µ is the Poisson's ratio, and the cross sectional
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area is relatively far from the contact zone, the following expression can be given by

J2−P =

∫
Scd

wn2 − Tiui,2)ds = w̄− + Pũ−2,2 (10)

J2−P =

∫
Shi

wn2 − Tiui,2)ds = −(w̄+ + Pũ+2,2) (11)

Where the i manifests the displacement of the neutral axis, the superscript "-"
denotes the remote uncracked cross section. The i can be obtained by elementary
strength theory of materials. w is the strain energy density per unit length. Then
substituting Eqs. (7)�(11) to Eq.(6), we have

J2−P =
1− µ2K2

I−ind−P
πE

+2

∫
Sab

wP ds = (w̄−+Pũ−2,2)−(w̄++Pũ+2,2) =
P

2
(ũ−2,2−ũ

+
2,2)

(12)
The axial strain ũ−2,2 and ũ+2,2 have been found:

ũ−2,2 = − P

EA
(13)

ũ+2,2 = − P

EA

∫ 1

0

dξ

1− (2a/W)
√

1− ξ2
(14)

In equation above, A=W indicates the remote cross section area, because of the
movement and cracking of indentation boundary, and Saband Sef are out of the K-
dominant regions. So the integral in left-hand side of Eq.(12) is a small quantity,
which can be neglected. Substitution of Eqs. (13) and (14) into (12) will yield the
following:

J2−P =
(1− µ2)K2

I−ind−P
πE

=
P

2
(ũ−2,2 − ũ

+
2,2) = (

P

EW

∫ 1

0

dξ

1− (2a/W)
√

1− ξ2
) (15)

The stress intensity factor in the situation of stress concentration is obtained as
follows:

KI−ind−P =

√
πP√

2W1− µ2)
(

∫ 1

0

dξ

1− (2a/W)
√

1− ξ2
− 1)

1/2 (16)

Another situation is the bending moment concentration, a closed integration path
Sabcdefghija is still selected, as shown in Fig.3(a), and according to the conservation
law and referring to the above calculation methods, we have:

J2−M =
1− µ2K2

I−ind−M
πE

+ 2

∫
Sab

wMds = (w̄− −M−ϕ′−)− (w̄+ −M+ϕ′+) (17)
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M=eP, as shown in Fig. 1(c), and this will yield the following:

KI−ind−M =

√
πP√

2W (1− µ2)
(

∫ 1

0

12× ε
W

2

1−2a/W
√

1− ξ2)3
dξ − 12× (

e

W
)2)

1/2 (18)

There are two unsymmetric Mode-I singular stress �elds, because of eccentric
loads. In this paper the two di�erent singular stress �elds are de�ned as L-Mode-I
singular stress �elds and R-Mode-I singular stress �elds. Then, according to Eqs.(16)
and (18), we �nd

KI−ind−R =
P
√
π√

2W1− µ2[∫ 1

0

1

(1− 2a/W
√

1− ξ2
+

12× ( e
W )2

(1− 2a/W
√

1− ξ2)3
dξ − 1− 12× (

e

W
)2

]1/2

(19)

KI−ind−L =
P
√
π√

2W1− µ2[∫ 1

0

1

(1− 2a/W
√

1− ξ2
−

12× ( e
W )2

(1− 2a/W
√

1− ξ2)3
dξ − 1 + 12× (

e

W
)2

]1/2

(20)
Here a hypothesis is given by e/l=0.3, so the following is obtained:

e

W
= 0.3(0.5− a

W
) (21)

Fig. 3. Contact model for elastic solids with �nite boundary and crack model
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5. Conclusions

In this paper, we propose an approach of calculating Mode-I plane indentation
with eccentric loads based on the conservation law. The results are in agreement
with the superposition of stress intensity factors for the bending moment and the
normal load. The results also indicate that the boundary cracking of Mode-I plane
indentation with positive loads and eccentric loads have di�erent critical cracking,
and they are di�erent from the crack growth problem, but they all have the same
asymptotic singular stress �eld, the same mechanical essence, and homologous crack-
ing mechanism. In future work, its theoretical signi�cances covers propose a new
fundamental theory on the fracture-based rock breakage. Establish the theoretical
basis for rock-like and brittle materials cutting and the design method of oil and gas
cone bit.
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